国产精品亚洲YOURPORN,日韩欧美一区二区三区不学,欧美大鸡巴性爱网站,91精品视频成人网

  • <noscript id="4bm7e"><optgroup id="4bm7e"><div id="4bm7e"></div></optgroup></noscript>
    <i id="4bm7e"></i>
    1. 今天是
      今日新發(fā)布通知公告0條 | 上傳規(guī)范

      9月2日物理學(xué)院“博約學(xué)術(shù)論壇”系列報告第39期

      發(fā)布日期:2013-08-30
      題 目:Localization in Topological Quantum Computation
      報告人:Eric C. Rowell, Associate Professor
      Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
      時  間:2013年9月2日(星期一)上午10:00
      地  點:中心教學(xué)樓610
      ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
      Curriculum Vitae
      Education
      I. Ph.D. Mathematics University of California, San Diego, June 2003
      II. B.A. Mathematics University of California, San Diego, June 1997
      Research interests
      Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
      Recent papers
      (1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
      (2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
      (3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
      (4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
      (5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
      (6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
      (7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
      (8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
      (9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

      聯(lián)系方式:物理學(xué)院辦公室(68913163)
      網(wǎng)    址:
      http://physics.bit.edu.cn/

      (審核:姜艷)